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1. introDuCtion

Nearly all modern macroeconomic theories are built upon the 
behavior of  the money market and the demand for money. Economists 
and policy makers alike have delved into the subject matter in order 
to understand the surrounding implications for monetary policy. In 
particular, researchers have tried to address and empirically validate 
two specific theoretical models. The first, the quantity theory demand 
for money, asserts that the income elasticity of  real money balances 
is equal to one and that interest rates have no effect on the demand 
for real money balances (i.e. ηY = 1 and ηR = 0, where ηz denotes the 
elasticity of  the demand for real balances with respect to z). The 
second, the Baumol (1952) and Tobin (1956) transactions theory 
of  the demand for money, asserts that agents are preoccupied by 
the decision of  when and how often to exchange bonds for money. 
Ultimately, the testable hypotheses are that a rise in real income leads 
to a less‑than‑proportionate increase in the average holding of  real 
money and that interest rates do have a negative role in the demand 
for money (in particular, ηY = 1/2 and ηR = –1/2).

Within this vast literature, contemporary empirical studies have 
focused on estimating the conventional money demand function by 
means of  error‑correction models – see, for example, Sriram (1999) 
and Serletis (2007) for a brief  review and references. However, these 
models only emphasize the time series characteristics of  the data. As 
a result, the elasticity estimates derived from the time‑series approach 
seem to be sensitive to the univariate and multivariate time series 
properties of  the money demand variables, the sample period, the 
functional form, and the definition of  the underlying variables. Others, 
such as Fisher and Seater (1993) and King and Watson (1997) have 
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tried to develop more solid procedures in order to test the long‑run 
neutrality and superneutrality hypotheses. Serletis and Koustas (1998, 
2001), for example, have applied both methodologies and have found 
evidence that money is neutral in the long‑run for most countries. 
Yet, when international comparisons are made applied researchers 
have typically neglected the cross‑section component of  the data.

More recently, Fujiki, Hsiao, and Shen (2002) and Fischer 
(2005) have estimated cross‑regional money demand in both Japan 
and Switzerland using traditional panel data methodology. Moreover, 
Serletis and Vaccaro (2006) have used cross‑country data (for 48 
countries over the 1980‑1995 period) to investigate the long‑run 
relationship between (both narrow and broad) money and interest 
rates, real GDP, institutions, financial structure, and financial 
development. They have shown that the interest and income 
elasticities of  real money balances are fairly stable and conform to 
the theoretical predictions of  the quantity theory demand for money. 
As well, they have found that institutions, financial structure, and 
financial development do play a role in the demand for money in an 
aggregate setting, albeit a limited role. However, Serletis and Vaccaro 
(2006) have also shown that the assumption that all of  the countries 
can be treated as a homogeneous unit can cause systematic distortions. 
Specifically, they utilized unsupervised Bayesian methods, based on 
finite mixture models and mathematical properties, to cluster the 
data set into two distinct groups.  Regressions based on each of  
the partitioned data sets displayed heterogeneity with respect to the 
influence institutions, financial structure, and financial development 
have on money demand, for each of  the two groups.

It seems that a panel data approach to investigating money 
demand issues is advantageous, because it allows the researcher 
to sort out economic effects that may not be distinguishable with 
the use of  either cross‑section or time series data alone. In the 
case of  international comparisons, the panel consists of  countries 
overtime. As such, through this methodology we can enhance our 
econometric modeling and hypotheses testing by investigating possible 
heterogeneity across these units. In particular, the techniques of  
panel data estimation can take such heterogeneity into account by 
allowing for country‑specific variables. Secondly, panel data analysis 
minimizes the bias that might result if  we aggregate countries into a 
broad homogeneous unit and simply use the cross‑section. Lastly, by 
combining the time series of  cross‑sectional observations, panel data 
gives us more informative data, variability, degrees of  freedom, less 
collinearity among variables, and added efficiency – see, for example, 
Gujarati (2003, Chapter 16) for an extensive discussion.
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In addition, within the contemporary econometrics of  panel 
data, there have been extensive interest and contributions made to 
nonstationary panel time‑series models and dynamic panel data – see 
Banerjee (1999), Phillips and Moon (2000), and Baltagi and Kao 
(2000) for concise surveys and references. As Baltagi and Kao (2000, 
p. 8) point out,

“the hope of  the econometrics of  nonstationary panel data is to 
combine the best of  both worlds: the method of  dealing with 
nonstationary data from the time series and the increased data and 
power from the cross‑section. The addition of  the cross‑section 
dimension, under certain assumptions, can act as repeated draws from 
the same distribution. Thus as the time and cross‑section dimension 
increase, panel statistics can be derived which converge in distribution 
to normally distributed random variables”.

Two strands of  the literature mentioned above, which have not 
been applied to money demand research, are testing for panel unit 
roots and panel cointegration. Regarding panel unit roots, there 
have been many recent contributions. Notable advances have been 
made by Levin, Lin, and Chu (2002), Breitung (2000), Im, Pesaran, 
and Shin (2003), Maddala and Wu (1999), Choi (2001), Sarno and 
Taylor (1998), and Hardi (2000), among others. The tests derived by 
these authors are quite diverse with respect to their construction and 
interpretation, and have been widely used in the modern purchasing 
power parity, growth and convergence, real GDP, and exchange rate 
literatures. Regarding panel cointegration, notable advances have been 
made by McCoskey and Kao (1998), Kao (1999), and Pedroni (1999, 
2000, 2001, 2004), among others. These panel cointegration and 
panel cointegrating vector tests are able to extensively accommodate 
heterogeneous dynamics across individual members of  the panel and 
have allowed researchers to directly test the long‑run equilibrium 
relationships highlighted above. Banerjee (1999) summarizes these 
recent developments in both subfields quite nicely as

“in other instances where a new literature comes to be seen to be 
significant, the aggregate has turned out to be greater than the sum 
of  its parts and the theory and practice of  integrated series in panel 
data have given rise to a set of  interesting and surprising results 
which are uniquely its own”.

In this paper, our main objective is to embark on the first 
preliminary investigation of  cross‑country money demand which 
exploits panel routines to investigate the long‑run relationship 
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between real money balances, nominal interest rates, and real income. 
Our research utilizes traditional panel methodology as well as recently 
developed state‑of‑the art panel unit root and panel cointegration 
techniques, in order to test diverse aggregate long‑run theories 
of  money demand and examine possible heterogeneity within the 
dataset. In our opinion, a 48 multi‑country setting over the 1980‑95 
time period provides itself  particularly well to both cross‑country 
and aggregate comparisons of  the issue under discussion.

The organization of  this paper is as follows. In Section 2 we 
describe the data and the underlying sources of  collection and 
origin. Section 3 outlines the conventional panel data methodology 
utilized to estimate both narrow and broad money demand functions 
and presents estimates using traditional panel data models. Section 4 
summarizes the state‑of‑the‑art contemporary panel routines used to 
investigate the aggregate group relationships between real monetary 
aggregates, interest rates and real gross domestic product. In the 
same section we display the results of  these new innovative panel 
time‑series procedures applied to the demand for money. The final 
section concludes the paper and outlines the implications of  our 
findings.

2. the DAtA

The narrow definition of  money chosen is what we shall refer 
to as M1. The International Monetary Fund (IMF) and standard 
monetary textbooks define such a narrow measure as, transferable 
deposits (demand deposits) and currency outside of  banks. The broad 
definition of  money chosen is what we shall refer to as M2. This 
broad measure is identified as M1 plus quasi money (time, savings, 
and foreign currency deposits). For the 48 countries included in the 
study – see Table 1 – annual data pertaining to both measures were 
collected over the 1980‑1995 period from the IMF International 
Financial Statistics (IFS), the World Development Indicators (WDI), 
and various central banks in local currency units – this data set is 
also part of  the Serletis and Vaccaro (2006) study. The data were 
then converted to United States dollars by using the U.S. dollar per 
local currency unit 1995 average exchange rate for each country.

In order to analyze the monetary aggregates described above in 
real terms, we then collected data from the WDI on the consumer 
price index (CPI) for each country with a base year of  1995. The 
average was then taken to obtain a single observation for each country. 
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Each of  the monetary aggregates was then deflated by the consumer 
price index for each of  the 48 countries to obtain a real measure. 
Although the GDP deflator would have been the ideal price index to 
use, it was not exploited due to data availability and base year issues. 
However, for those countries for which we found both, a comparison 
was made and differences between the two indices were minor if  not 
nil. At any rate, the CPI is the most publicly reported price index.  
Constant 1995 U.S. dollar GDP data were also collected from the 
WDI for each country.

tABLe 1
Countries

Argentina Kenya  
Australia Malaysia  
Austria Mexico  
Belgium Netherlands  
Brazil New Zealand  
Canada Norway  
Chile Pakistan  
Colombia Panama  
Cyprus Peru  
Denmark Philippines  
Ecuador Portugal  
Egypt South Africa  
Finland Spain  
France Sri Lanka  
Germany Sweden  
Ghana Switzerland  
Greece Taiwan, China  
Honduras Thailand  
India Trinidad and Tobago  
Ireland Turkey  
Israel Tunisia  
Italy United Kingdom  
Jamaica United States  
Japan Zimbabwe  

With regards to short term interest rate data, there were some 
data availability issues. We could not find a uniformly defined 
interest rate series for all 48 countries. As a result, data were first 
collected for countries for which there existed a 90‑day treasury bill 
rate or the local equivalent. Subsequently, data were collected for 
those countries for which there existed a money market rate. For 
those countries which neither existed, a deposit rate was collected. 
Collecting interest rate data from Latin and South American countries 
in some cases was quite tedious.
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3. trADitionAL PAneL sPeCiFiCAtions AnD resuLts

Panel data refers to data for N different entities observed over 
T different time periods. A panel data set is advantageous because it 
allows us to sort out economic effects that may not be distinguishable 
with the use of  either cross‑section or time series data alone. In this 
section, we outline the traditional panel data methodology and use it 
to estimate conventional money demand functions for both narrow 
and broad specifications. It is to be noted that we are dealing with 
an unbalanced panel, as not all of  the countries in our study have 
the same number of  time series observations. 

We begin our study by using the three most common estimators: 
pooled ordinary least squares (OLS), the fixed effects model (FEM), 
and the random effects model (REM). The assumptions of  these 
estimators do differ and each has its own drawbacks, as will be 
discussed shortly. The pooled model can be expressed as

 m
it = b

1
 + b

2
Rit + b

3
Yit + εit (1)

where i represents country, with i = 1,....48, and t denotes time, with 
t = 1,...,15. R and Y denote the natural logarithm of  the opportunity 
cost and transactions variables, respectively. For the pooled model it 
is assumed that E(εit) = 0 for all i and t, E(ε2

it) = σ2, and E(εit, εjs) = 0 for 
all s ≠ t or all i ≠ j. The major pitfall of  the pooled model is that it 
ignores heterogeneity across countries with respect to unobservable 
characteristics, either for lack of  variation or as a deliberate modeling 
choice. Hsiao (2003) points out that either reason may cause the 
pooled estimator to be biased. Hence, we use it as a base specification 
to make comparisons against. A total of  NT – 3 degrees of  freedom 
would be involved for this estimator.

In general, the most common procedures to account for 
heterogeneity in panel data are the FEM and REM estimators. 
Between the two estimators, they can account for heterogeneity 
across units, by means of  decomposing the effects of  unobservable 
factors into effects specific to cross‑sectional units, to time‑periods, 
and to both cross‑sectional units and time‑periods – see Hsiao (2003, 
p. 97) for an introduction and comprehensive discussion of  the two 
estimators. The fixed effects model which we are interested in can 
be expressed as,

 m
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where, the α’s are the differential intercept coefficients representing 
a time‑invariant group specific attribute. The D’s represent country 
specific dummy variables. By allowing the intercept to vary, we can 
investigate whether or not country specific attributes shift the money 
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demand function. However, as a group we should observe a long‑
run money demand theory, such as the quantity theory demand for 
money or the Baumol‑Tobin transactions theory, to hold.

It must be noted that the inclusion of  dummies does not directly 
identify the sources which may cause the intercept to shift over 
countries. However, the cross‑country estimates obtained by Serletis 
and Vaccaro (2006) can give some kind of  idea and intuition to which 
institution, financial development, and financial service variables 
may be useful for future panel modeling, once data availability and 
collection issues are overcome. In addition, another pitfall of  the 
FEM is that a substantial number of  degrees of  freedom are lost 
with the addition of  so many coefficients. For example, in our case 
where we allow the constant to vary, there would be 47 dummy 
differential intercept coefficients, an intercept coefficient for the 
base country, and 2 coefficients for the interest rate and real income 
elasticities. Clearly, specification and diagnostic tests would have to 
be conducted to determine which of  the three models is preferred.

Alternatively, the REM model reflects the lack of  knowledge 
about the model through the disturbance term. The REM does so 
by using a pooled cross‑section and time series model in which error 
terms may be correlated across time and individual units. The REM 
model can be expressed as,

 mit = b
1
 + b

2
Rit + b

3
Yit + εit (3)

 εit = ui + vt + wit (4)
where ui b N(0, σ2

u) represents the cross‑section error component, 
vt b N(0, σ2

v) signifies the time series component and wit b N(0, σ2
w) 

denotes the combined error component. It is assumed that individual 
error components are uncorrelated with each other and are not 
autocorrelated across both cross‑section and time series. At the same 
time the error term would consist of  three components and would 
have variance

 Var (εit) = σ2
u + σ2

v + σ2
w (5)

If  both σ2
u and σ2

v are equal to 0, the error term consists of  
a single combined white noise disturbance and the pooled model 
is preferred. When the combined error component σ2

w equals zero, 
then the fixed effects model is preferred. The REM is estimated as 
a two‑stage generalized least‑squares regression. Typically the REM 
is considered an intermediate model which lies between the extreme 
of  a zero combined error component (FEM) and an infinitely large 
combined error component (pooled model).

In order to obtain estimates of  the traditional panel models 
that we just described, we utilize the EViews 5 quantitative micro 



532 A. Serletis - J. Vaccaro

software. To begin, we present the panel descriptive statistics for the 
conventional money demand variables in Table 2. There is a wide 
variation of  logged real money supplies, logged nominal interest 
rates, and logged real outputs across the panel. Table 3 displays the 

tABLe 2 - Panel Descriptive Statistics: 1980-1995

Standard Cross
Series Mean Minimum Maximum deviation sections, N N×T

log M1 18.620 14.828 23.632 1.991 48 764
log M2 19.787 15.046 24.795 2.046 48 762
log R 2.617 0.190 16.087 1.184 48 752
log Y 25.229 21.685 29.624 1.849 48 768

tABLe 3 ‑ Money Demand: Conventional Panel Data Estimators

Model  
Pooled OLS Fixed Effectsb Random Effects  

Dependent Variablea  
Regressors M1 M2 M1 M2 M1 M2  

Constant ‑6.559** ‑6.617** ‑3.506** ‑12.655** ‑5.096** ‑9.811**

(0.332) (0.272) (1.151) (0.966) (0.846) (0.685)  
log R ‑0.114** ‑0.145** ‑0.015 0.031** ‑0.016 ‑0.024**

(0.020) (0.016) (0.011) (0.009) (0.011) (0.009)  
log Y 1.009** 1.061** 0.878** 1.282** 0.941** 1.170**

(0.012) (0.010) (0.045) (0.038) (0.033) (0.026)  

R
–2 0.891 0.931 0.986 0.991 0.499 0.705  

F 3081.5** 5087.6** 1118.9** 1687.2** 374.2** 893.5**

DW 0.051 0.084 0.322 0.417 0.300 0.373  
LRc 1609.6** 1567.2**

Hausmand 6.978* 30.197**

Notes: 
a  Both aggregates are in real terms and logged. Standard errors are given in pa‑

rentheses, and * and ** indicate significance at the 5 and 1% levels, respectively. 
The Swamy and Arora algorithm is used to estimate the component variances 
for the REM.

b  The FEM only allows the constant to vary. The estimated coefficients of  the 
group-specific effects are omitted.  

c  The LR statistic refers to a test of  the null hypothesis of  the pooled cross‑sec‑
tion model against the fixed effects model. The statistic has a χ2 distribution with 
(N–1) degrees of  freedom, where N is the number of  cross‑section units. Note 
that the estimates of  the FEM include coefficients for group-specific effects.  

d  The Hausman test is a test with the null hypothesis of  the random effects model 
against the fixed effects model. The statistic has a χ2 distribution with 2 degrees 
of  freedom.
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results for the estimates of  (1)‑(3) for each monetary aggregate as 
the dependent variable. In general, the three models are either in 
accordance with the quantity theory demand for money, or come 
close for the group of  48 countries. In the pooled model, we test the 
restriction that the income coefficient is equal to one and we cannot 
reject the restriction placed on the real income elasticity, for both 
aggregates. The interest elasticity is negative and significant, but 
closer to the quantity theory than the Baumol‑Tobin prediction.

The next two columns show the fixed effects estimates. This 
specification allows the constant to vary according to country specific 
attributes. However, although we do not report the country specific 
results, the FEM displayed heterogeneity in the constant with the 
majority of  the country specific coefficients being significant. For 
example, the country specific constants varied from ‑2.129 for 
Belgium to 1.232 for Japan, when we treated M1 as the dependent 
variable. When we treated M2 as the dependent variable, the country 
specific constants varied from ‑2.291 for Belgium to 1.326 for Cyprus. 
The estimated interest rate elasticity is not significant with M1 as 
the dependent variable. However, with M2 as the dependent variable 
it becomes marginally positive and significant. Regarding the real 
income elasticity, the estimates varied from 0.878 to 1.282 for each 
of  the real monetary aggregates.

The last two columns report the results for the REM. In contrast 
to the fixed effects estimates, the random effects estimates are more 
supportive of  the quantity theory demand for money. The interest 
elasticity is not significant at conventional levels for either aggregate 
and the income elasticity varies from 0.94 for M1 to 1.17 for M2.

In order to make selection between the models we experimented 
with, we conducted a variety of  specification tests. The likelihood 
ratio test statistic (LR) is highly significant in both cases. This 
allows us to reject the null hypothesis of  the pooled model over the 
fixed effects model, for each monetary aggregate. The Hausman test 
statistic is also highly significant, indicating that the fixed effects 
model is preferred over the random effects model. In summary, these 
standard panel specification tests show that the fixed effects model 
is to be preferred over the pooled cross‑section and the random 
effects models. This conclusion indicates that there is a great deal 
of  heterogeneity among the countries.

However, inspection of  the Durbin‑Watson (DW) statistics 
indicates significant residual serial correlation and specification errors. 
In particular, the DW statistics are very low for all of  the models 
we experimented with. Therefore, we conclude that these estimators 
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are biased and may not be consistent and that further hypothesis 
testing within these models would be spurious. As such, we next 
turn to recent, state‑of‑the‑art developments in panel data estimation 
in order to further our investigation of  money demand issues.

4. ConteMPorAry PAneL MethoDoLoGy

The panel unit root tests that we consider are from Maddala 
and Wu (1999), Breitung (2000), Hardi (2000), Levin, Lin, and 
Chu (2002), and Im, Pesaran, and Shin (2003). Regarding panel 
cointegration, we will exploit Pedroni’s (1999, 2000, 2001, 2004) 
recent contributions – although we would have also liked to include 
the Taylor and Sarno (1998) and Sarno and Taylor (1998) MADF 
test based on SUR, we did not, because we are dealing with an 
unbalanced panel; in order to apply their methodology a balanced 
panel is required.

4.1 Panel Unit Root Tests

Although the panel unit root tests are similar, they are not 
identical, and as such we begin by briefly outlining the various tests 
through the following AR(1) process for panel data

y
it = ρiyit–1 + X'itδ + εit

where, as before, i = 1,2,...,N cross‑section units that are observed 
over periods t = 1,2,...,T. The exogenous variables in the model, which 
may include any fixed effects or individual trends, are represented by 
X, the autoregressive coefficients are denoted by ρi, and the errors, 
εit, are assumed to be mutually i.i.d. If  |ρi|<1, then yi is said to 
be weakly (trend‑) stationary. However, if  |ρi|=1 then yi has a unit 
root. With regards to testing, two assumptions can be made about 
ρi. Tests which are considered first generation tests, assume that the 
persistence parameters are common across cross‑sections, so that 
ρi = ρ, for all i. The Levin, Lin, and Chu (2002), Breitung (2000), 
and Hardi (2000) tests make this assumption. Alternatively, second 
generation tests allow ρi to vary freely across the cross‑section units. 
The Im, Pesaran, and Shin (2003) and Maddala and Wu (1999) tests 
are of  this form.

Levin, Lin, and Chu (2002) and Breitung (2000) both consider 
the following basic ADF specification
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Next, the proxies are obtained by standardizing both ity&Δ  and 1−ity&  by the (relevant) regression 
standard error, is , as follows 
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Next, the proxies are obtained by standardizing both Δy–it and y–it–1
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a modified t‑statistic for the resulting α̂ is asymptotically normally 
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complicated moment calculations --- see Levin, Lin, and Chu (2002) for more details. 
 
The Breitung (2000) method differs from the Levin, Lin, and Chu (2002) method in two ways. 
First, only the autoregressive portion is removed when constructing the standardized proxies. 
Second, the proxies are transformed and de-trended. As such, the Breitung algorithm does not 
require kernel computations --- see Breitung (2000) for more details regarding the differences in the 
proxies. 
 
The Hardi (2000) panel unit root test is akin to the Kwiatkowski, Phillips, Schmidt, and Shin 
(1992) stationarity test, known in the literature as KPSS test, and has the null hypothesis of no unit 
root in any of the series in the panel. As with the KPSS test, the Hardi test is based on the residuals 
from the individual OLS regressions of ity  on a constant or constant and a trend. Such a regression 
can be defined as 
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where )(tSi  are the cumulative sum of the residuals and 0f  is the average of the individual 
estimators of the residual spectrum at frequency zero. Hardi (2000) then demonstrates, with mild 
assumptions, that 
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where 6/1=ξ  and 45/1=ζ , if the model includes constants, and 15/1=ξ  and 6300/1=ζ , 
otherwise. Such a stationarity test can be considered a viable alternative to the above unit root tests 
because it allows the researcher to investigate the autoregressive nature of the panel in a diverse 
way in comparison to the ADF methodology. As such, it helps build power to the conclusions made 
with respect to the panel members, individually and as a group. 
 
In contrast to the three tests described above, the Im, Pesaran, and Shin (2003) and Maddala and 
Wu (1999) methodologies allow for cross-sectional heterogeneity in the value of iρ . These second 
generation tests are in a class of their own, because of the way they combine individual unit root 
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calculations – see Levin, Lin, and Chu (2002) for more details.
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The Breitung (2000) method differs from the Levin, Lin, and 
Chu (2002) method in two ways. First, only the autoregressive portion 
is removed when constructing the standardized proxies. Second, 
the proxies are transformed and de‑trended. As such, the Breitung 
algorithm does not require kernel computations – see Breitung (2000) 
for more details regarding the differences in the proxies.
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test is based on the residuals from the individual OLS regressions 
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be defined as
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where 6/1=ξ  and 45/1=ζ , if the model includes constants, and 15/1=ξ  and 6300/1=ζ , 
otherwise. Such a stationarity test can be considered a viable alternative to the above unit root tests 
because it allows the researcher to investigate the autoregressive nature of the panel in a diverse 
way in comparison to the ADF methodology. As such, it helps build power to the conclusions made 
with respect to the panel members, individually and as a group. 
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generation tests are in a class of their own, because of the way they combine individual unit root 

where ξ = 1/6 and ξ = 1/45, if  the model includes constants, and 
ξ = 1/15 and ξ = 1/6300, otherwise. Such a stationarity test can be 
considered a viable alternative to the above unit root tests because it 
allows the researcher to investigate the autoregressive nature of  the 
panel in a diverse way in comparison to the ADF methodology. As 
such, it helps build power to the conclusions made with respect to 
the panel members, individually and as a group.

In contrast to the three tests described above, the Im, Pesaran, 
and Shin (2003) and Maddala and Wu (1999) methodologies allow 
for cross‑sectional heterogeneity in the value of  ρi. These second 
generation tests are in a class of  their own, because of  the way they 
combine individual unit root tests to derive a panel specific result. 
In the Im, Pesaran and Shin (2003) test the null and alternative 
hypotheses are defined as H

0
 : ρi = 0 for all i and HA : ρi < 0, i = 1,2,..., 

N
1
, ρi = 0, i = N

1
+1, N

1
+2,..., N. Since the ρi’s are not restricted to be 
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identical under the null hypothesis, the alternative hypothesis is that 
‘not all members of  the panel contain a unit root.’ Once the separate 
individual ADF regressions have been estimated, the average of  
the t‑statistics for αi is then adjusted to arrive at the desired test 
statistics. This can be expressed as

tests to derive a panel specific result. In the Im, Pesaran and Shin (2003) test the null and 
alternative hypotheses are defined as 0:0 =iH ρ  for all i  and 0: <iAH ρ , 1,,2,1 Ni Κ= , 0=iρ , 

NNNi ,,2,1 11 Κ++= . Since the iρ 's are not restricted to be identical under the null hypothesis, 
the alternative hypothesis is that ‘not all members of the panel contain a unit root.’ Once the 
separate individual ADF regressions have been estimated, the average of the t -statistics for iα  is 
then adjusted to arrive at the desired test statistics. This can be expressed as 
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Im, Pesaran, and Shin (2003) provide simulated critical values for NTt  for different numbers of 
cross section units and series lengths, when the lag order is always zero. In the general case where 
the lag order is non-zero for some of the cross-sectional units, Im, Pesaran, and Shin (2003) 
illustrate that a properly standardized NTt  has an asymptotic standard normal distribution 
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Maddala and Wu (1999) propose an alternative approach to panel unit root tests. In particular, they 
propose using Fisher's (1932) results to derive tests which combine the p -values from individual 
unit root tests. They illustrate that if iπ  is defined as the p -value from any individual unit root test 
for the cross sectional unit i , then under the null hypothesis of unit root for all N  units, an 
asymptotic result can be derived in the form of 
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where 1−Θ  is the inverse of the standard normal cumulative distribution function. When the Fisher 
tests are based on ADF regressions (refered to as ‘Fisher ADF’), the number of lags used in each 
cross-section ADF regression must be specified. For the Phillips-Perron (PP) form of the test 
(refered to as ‘Fisher PP’), a kernel for estimating the frequency zero spectrum, 0f , must be 
specified by the researcher. 
 
However, some caveats must be noted with all five unit root tests mentioned above. Breuer et al. 
(2002) point out that the alternative hypothesis in the first generation tests is rather restrictive in the 
sense that with as few as one stationary member in the panel, the rejection rate rises above the 
nominal size of the test, and increases with the number of stationary series in the panel. In such a 
case, the null could be correctly rejected, but the alternative of ‘no unit roots’ is also false in mixed 
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where Θ–1 is the inverse of  the standard normal cumulative distribution 
function. When the Fisher tests are based on ADF regressions 
(refered to as ‘Fisher ADF’), the number of  lags used in each 
cross‑section ADF regression must be specified. For the Phillips‑
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Perron (PP) form of  the test (refered to as ‘Fisher PP’), a kernel for 
estimating the frequency zero spectrum, f

0
, must be specified by the 

researcher.
However, some caveats must be noted with all five unit root tests 

mentioned above. Breuer, McNown and Wallace (2002) point out 
that the alternative hypothesis in the first generation tests is rather 
restrictive in the sense that with as few as one stationary member in 
the panel, the rejection rate rises above the nominal size of  the test, 
and increases with the number of  stationary series in the panel. In 
such a case, the null could be correctly rejected, but the alternative 
of  ‘no unit roots’ is also false in mixed panels. In contrast, the second 
generation tests admit that there may be a mixture of  stationarity 
and nonstationarity contained within the panel under the alternative. 
However, rejection of  the null in these second generation tests does 
not provide the researcher with information regarding the exact mix 
of  series in the panel.

4.2 Panel Cointegration Tests

If  unit roots are verified in multiple variables that theoretically 
have a long‑run relationship, then cointegration can be explored. 
In particular, the Pedroni (1999, 2000, 2001, 2004) cointegration 
methodology proposes procedures which can accommodate for 
considerable heterogeneity across individual members of  the panel. 
The advantage of  this approach is that it allows one to pool the long 
run information contained in the panel, while permitting the short 
run dynamics and fixed effects to be heterogeneous among different 
members of  the panel. 

In general, the following regression equation can be drawn upon 
to help summarize a panel cointegration test

y
it = αi + δit + X'

it
 β

i
 + eit

where yit and X
it
 are both a time series panel of  observable variables, 

with X
it
 and β

i
 being m‑dimensional vector for each i. The variables 

are assumed to be integrated of  order one for each member of  the 
panel. Inherently, testing for cointegration amounts to testing for a 
unit root in the panel residuals. 

The null hypothesis can be defined as H
0
: ‘all of  the individuals 

of  the panel are not cointegrated’. If  the null cannot be rejected, 
then e

it is also I(1). With regards to the alternative hypothesis, the 
researcher must first make an assumption about the underlying 
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data generating process. If  the underlying data generating process 
is assumed to require that all individuals of  the panel be either 
uniformly cointegrated or uniformly not cointegrated, then the 
alternative hypothesis can be expressed as H

A
: ‘all of  the individuals 

are cointegrated’. This would mean that e is I(0) for all panel 
members. In contrast, if  the underlying data generating process is 
assumed to permit individual members of  the panel to differ in 
whether or not they are cointegrated, then the alternative hypothesis 
can be expressed as H

A
: ‘a significant portion of  the individuals are 

cointegrated’. This can be interpreted as most of  the eit are I(0). 
This follows from the parameters αi and δi with β

i
 being permitted 

to vary across members, which allows for the cointegrating vectors 
to possibly be heterogeneous across panel members. 

In particular, Pedroni (1999, 2004) constructs two classes of  
cointegration tests. The first class is composed of  four tests based 
on pooling the data across the within dimension of  the panel. The 
‘panel‑rho’ statistic is comparable to the semiparametric ‘rho’ statistic 
studied in Phillips and Perron (1988) and Phillips and Ouliaris 
(1990) for the conventional time series application. Similarly, the 
‘panel‑t’ and ‘panel‑v’ statistics are also akin to the semiparametric 
t‑statistic and long run variance ratio statistic, each of  which has 
been investigated by Phillips and Ouliaris (1990). The ‘panel‑ADF’ 
statistic is constructed in a familiar fashion as the Levin, Lin, and 
Chu (2002) and Im, Pesaran, and Shin (2003) panel unit root test 
statistics, described earlier. In contrast, the second class of  statistics 
are constructed by pooling the data along the between dimension 
of  the panel. Therefore, these statistics in effect compute the group 
mean of  the individual conventional time series statistics. Pedroni 
presents three statistics within this class, the ‘group‑rho,’ ‘group‑t,’ 
and ‘group ADF’ statistics. 

All test statistics within both classes are asymptotically normally 
distributed. The use of  these statistics is the same as for the single 
series case. Large positive values of  the panel‑v statistic indicate 
rejection of  the null, whereas large negative values of  the panel‑
rho, panel‑t, and panel‑ADF statistics indicate rejections; the same 
can be said for the ‘group’ statistics. We urge the reader to refer to 
Pedroni (1999, 2004), where the construction and asymptotics of  the 
tests are outlined. 

Pedroni (2000) also proposes FMOLS methods for estimating 
and testing hypotheses for cointegrating vectors in dynamic time 
series panels. Pedroni argues that the advantage of  this estimator 
lies within its small sample properties of  producing asymptotically 
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unbiased estimators and nuisance parameter free standard normal 
distributions — see Pedroni (1999, p. 94) for an indepth discussion. 
The case is also made that, through FMOLS, inferences can be made 
regarding common long‑run relationships, which are asymptotically 
invariant to the degree of  short‑run heterogeneity in the dynamics 
typically associated with panels composed of  aggregate national data. 
Pedroni (2000) then proceeds by thoroughly outlining the underlying 
algorithm used to test hypotheses about common cointegrating 
vectors. He then also demonstrates, through monte carlo simulations, 
that FMOLS estimation in heterogeneous cointegrated panels has 
superior small sample properties and is asymptotically powerful 
and superconsistent — the monte carlo simulation results are found 
in Pedroni (2000, p. 107‑114). Pedroni (2001) also points out that 
another advantage of  this approach is that the point estimates have 
more useful interpretation in the event that the true cointegrating 
vectors are heterogeneous. As such, the FMOLS approach is 
appealing because it allows us to directly test the condition on the 
cointegrating vector that is required for long‑run money demand 
propositions, such as the quantity theory demand for money or the 
Baumol‑Tobin theory, to prevail. 

4.3. Panel Data Evidence

Table 4 reports the Levin, Lin, and Chu (LLC), Bretung (2000), 
Im, Pesaran, and Shin (IPS), and Fisher ADF, Fisher PP, and Hardi 
(2000) panel unit root test statistics preformed on the four variables 
of  interest. The top panel displays the results for the variables in log 
levels and the bottom reports results for the variables in logarithmic 
first differences. The optimal lag length was taken to be that selected 
by the Akaike Information Criterion (AIC) plus 2, with the maximum 
lag length set equal to 2. Setting the maximum lag at 2, is common 
practice in the purchasing power parity and real GDP literatures 
when dealing with annual panel data — see, for example, Pedroni 
(2004) and Rapach (2002). For both monetary aggregates, the null 
hypothesis of  a unit root in levels cannot in general be rejected at 
conventional significance levels. Regarding the Hardi statistic, we 
can reject the null hypothesis that there are no unit roots in any of  
the level series in the panel. Now, some ambiguity does arise when 
we perform the panel unit root tests on the interest rate. 

When we investigate the integration properties of  the interest 
rate variable, we find that both the Breitung and Fisher PP tests 
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do not reject the null of  a unit root, whereas the LLC, IPS and 
Fisher ADF tests do reject the null of  a unit root. Alternatively, 
the Hardi test does reject the null hypothesis of  no unit root. The 
interpretation of  these mixed results leads us to the conclusion 
that not all panel members likely contain a unit root. This could 
be due to the fact that some countries conduct monetary policy via 
an interest rate rule rather than a money supply rule. Inspection 
of  the raw data reveals that this is likely the case for Cyprus and 
Egypt — for both Cyprus and Egypt the interest rate series remains 
constant for most of  the 1980‑95 period, with minor changes after 
long periods of  time. With the exception of  the outliers, we conclude 
that the interest rate panel series can best be described as difference 
stationary. We also find support for a unit root across the panel in 
real output. Rapach (2002) also finds such evidence that real GDP 
levels are nonstationary within a panel data framework. From our 
perspective, the panel unit roots tests lend support to the Nelson 
and Plosser (1982) argument that most macroeconomic time series 
have a stochastic trend and are I(1). Furthermore, we interpret these 
results as evidence of  the real business cycle theory of  economic 
fluctuations. 

tABLe 4 ‑ Raw Panel Unit Root Test Results in the Variables  

LLC Breitung IPS Fisher Fisher Hardi  
Series t*

α‑stat t‑stat W‑stat ADFc‑stat PP‑stat Z‑statd  

A. Log levels  
M1a 1.347 ‑0.540  4.459  63.997 53.054 15.199**

M2 ‑1.537 1.792  2.443  87.732 98.591 15.844**

R ‑12.247** ‑1.089  ‑5.591** 185.345** 115.439 3.841**

Y ‑0.092 ‑0.647  6.799  44.630 48.467 16.557**

B. First differences of  log levels  
M1 ‑23.573** ‑6.955** ‑15.450** 377.259** 421.669** 1.164  
M2 ‑14.535** ‑8.199** ‑11.554** 313.431** 344.449** 3.513**

R ‑15.389** ‑6.528** ‑12.800** 333.678** 342.167** 4.256**

Y ‑17.337** ‑7.200** ‑11.946** 295.082** 272.224** 1.812*  
Notes:  
a  Both aggregates are in real terms and logged. Standard errors are in parentheses, 

and * and ** indicate significance at the 5 and 1% levels, respectively.  
b  Automatic selection of  lags based on AIC: 0 to 2 and a country specific constant 

is added to all tests.  
c  Probabilities for Fisher tests are computed using an asympotic χ2 distribution. All 

other tests assume asymptotic normality  
d  Newey‑West bandwidth selection using Bartlett kernel. 
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Given that we have established evidence supportive of  unit roots 
in the variables within the panel, we then proceed by testing for 
a cointegrating relationship between the variables of  interest. The 
cointegration tests are conducted for each monetary aggregate as 
the dependent variable, along with both the opportunity cost and 
scale variables as explanatory regressors. In particular, we interpret 
such cointegration tests as an investigation of  whether or not a long‑
run relationship between each of  the real monetary aggregates and 
explanatory variables exists. To obtain the desired test statistics we 
utilized RATS 6.02 and Pedroni’s PANCOINT source file, which 
is available from www.estima.com. We did consider and experiment 
with a couple of  variants of  the cointegration tests. In particular, 
we considered subtracting out common time effects and including 
heterogeneous member specific trends — although the cointegration 
test results with the heterogeneous member specific trends are not 
reported, they are available upon request from the authors. Neither 
of  these options, however, affected the sensitivity of  the conclusions 
drawn from each of  the hypotheses tests.

Table 5 presents the results for the panel‑stats and group‑stats 
for both monetary aggregates. The panel‑stats are listed in the upper 
portion and the group‑stats are listed in the lower portion of  the 
table. For the panel and group mean statistics we report results both 
for the raw data and for data that has been demeaned with respect to 
common time effects to accommodate some forms of  cross‑sectional 
dependency. The ADF and t‑statistic indicate that we can reject the 
null hypothesis of  no cointegration for all members of  the panel. 
However, the panel‑v, panel‑rho, and group‑rho statistics are always 
too small to reject the null hypothesis. Between all of  the tests which 
we considered, we are left with mixed results which are typically 
found in the time series literature. Another explanation can be that 
even though all of  the statistics are asymptotically consistent, they 
converge at different rates depending on the data generating process. 
In particular, Pedroni (2004) shows that with a fixed number of  cross‑
section units and a with time dimension increasing, that the panel‑v, 
panel‑rho, and group‑rho converge from below, indicating that they 
are somewhat undersized — see Pedroni (2004, p.609). As a result, 
we proceed as if  most of  the countries are cointegrated and there 
exist long‑run equilibrium relationships which link narrow and broad 
real monetary aggregates to nominal interest rates and real output. 

In the previous section in the initial traditional panel estimation, 
we determined that there was heterogeneity within the data set 
through diagnostic testing which indicated that the fixed effects model 
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was preferred to the other models we considered. This finding, along 
with evidence of  cointegration, allows us to test for the cointegrating 
vector using Pedroni’s FMOLS procedure, which is designed 
explicitly for heterogeneous cointegrated panels. This source file, 
PANELFM, is also available on the Estima website. In particular, 
we can directly test whether the condition on the cointegrating vector 
that is required for either the classical quantity theory demand for 
money or the Baumol‑Tobin transactions theory to hold. In the case 
for the quantity theory demand for money to hold, we require under 
the null hypothesis that interest and real output coefficients equal 
zero and unity, whereas under the Baumol‑Tobin theory they should 
equal to ‑1/2 and 1/2, respectively. Our approach is similar to the 
approach taken by Pedroni in the purchasing power parity literature, 
where he experiments within a bivariate framework which links the 
logged bilateral U.S. nominal exchange rate and logged aggregate 
price ratio between the two countries. 

tABLe 5 ‑ Panel and Group Cointegration Tests
in the Money Demand Function

Monetary 
Aggregatea v‑stat ρ‑stat t-stat ADF‑statb  

Standard panel statisticsc  
M1 0.987 ‑0.607 ‑5.455** ‑6.070**

M2 1.045 0.961 ‑2.447** ‑4.003**

Time demeaned panel statisticsd

M1 ‑0.364 0.340 ‑3.149** ‑3.239**

M2 0.720 0.151 ‑3.385** ‑3.888**

Standard group statistics  
M1 — 2.008 ‑6.223** ‑6.357**

M2 — 3.558 ‑2.919** ‑4.946**

Time demeaned group statistics  
M1 — 2.772 ‑3.333** ‑3.386**

M2 — 3.007 ‑3.390** ‑4.366**

Notes:  
a  Both aggregates are in real terms and logged. * and ** indicate significance at the 

5 and 1% levels, respectively. All tests assume asymptotic normality. The critical 
values for the left hand 10%, 5% and 1% levels are ‑1.282, ‑1.645, and ‑2.326, 
respectively.  

b The ADF tests use a maximum lag of  2.  
c Panel statisticss are weighted by long run variances  
d The time demeaned specification subtracts out the common time effect.
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Finally, the FMOLS results are displayed in Table 6. We report 
only the group FMOLS estimates and t‑statistics for each definition 
of  real balances under the null hypotheses, H

0
 : β

1
 = 0 (nominal interest 

elasticity equals zero) and H
0
 : β

2
 = 1 (real income elasticity equals 1). 

In addition to the raw data, we again display results for data that has 
been time demeaned. The raw coefficient estimates and corresponding 
t‑statistics for both aggregates are presented in the upper portion of  
the table. The time demeaned results are presented in the bottom 
portion of  the table. It is to be noted that we do not report the 
individual tests because the theories we are testing are considered 
long‑run propositions which should theoretically hold in the aggregate. 
However, the individual results did display a great deal of  heterogeneity 
in the estimated slope coefficients, indicating heterogeneous 
cointegrating vectors. These results are available upon request. 

tABLe 6 ‑ FMOLS Cointegrating
Vector Tests

Variable Coefficient t‑statistic   

M1 group results  
log R ‑0.09 ‑13.81  
log Y 1.09 ‑3.97  

M2 group results  
log R ‑0.03 ‑3.89  
log Y 1.45 19.49  

M1 group results (time demeaned)  
log R ‑0.11 ‑12.69  
log Y 1.15 3.30  

M2 group results (time demeaned)  
log R ‑0.00 0.27  
log Y 1.26 6.52  

Notes: Both aggregates are in real terms and logged * and ** in‑
dicate significance at the 5 and 1% levels, respectively. All tests 
assume asymptotic normality. The critical values for the right 
hand 10%, 5%, and 1% levels are 1.282, ‑1.645, and ‑2.326, 
respectively. The critical values for the two‑sided 10%, 5%, and 
1% levels are 1.282, ‑1.645, and ‑2.326, respectively.

The results of  the raw specification when we consider the 
narrow aggregate as the dependent variable, indicate that we cannot 
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reject the null that the cointegrating vector contains unity but can 
reject the null that it contains zero (ηR = –0.09). Given the estimated 
interest elasticity, this finding is nearly supportive of  the quantity 
theory demand for money and challenges the Baumol‑Tobin theory. 
However, under the time demeaned specification, the estimated 
income elasticity coefficient is slightly larger and the null of  unity is 
rejected, along with the null of  the interest elasticity being equal to 
zero (ηR = –0.11, ηY = 1.15). Our interpretation of  both specifications 
is that the group cointegrating vector is likely to be near, but not 
exact, to the hypothesized classical quantity theory prediction for the 
countries under investigation. 

With regards to the broad cointegrating vector, the results of  
the raw specification indicate that we can reject both of  our null 
hypotheses at conventional levels. The estimated real income elasticity 
of  the demand for real broad money balances is also much higher 
(ηR = –0.03, ηY = 1.45) than either of  the narrow estimates. The results 
of  the time demeaned specification also reject the null hypothesis of  
the real income elasticity equaling unity. This estimated coefficient 
is much lower (ηY = 1.26), but nevertheless still hard to reconcile 
theoretically. However, we cannot reject the null hypothesis placed on 
the nominal interest elasticity of  the demand for real narrow money 
balances. Surprisingly, the estimated coefficient is exactly equal to 
zero. Again, we conclude that the cointegrating vector is close to, but 
not exact, to the hypothesized classical prediction. 

From the FMOLS results, we conclude that both the group 
real income and nominal interest rate elasticity coefficients are 
heterogeneous across aggregates, with the real income elasticity 
being more responsive in the broad money measure. As such, we 
interpret these results as an indication that the group cointegrating 
vector is heterogeneous across different definitions of  money, even 
in the aggregate. 

5. ConCLusions

We have used panel data to investigate the long‑run relationship 
between narrow and broad money, interest rates, and real GDP for 48 
countries over the 1980‑95 period. In particular, we considered and 
evaluated a variety of  models. Our selection criteria and regression 
diagnostics indicated that the fixed effects specification, which allows 
for most of  the heterogeneity within the 48 countries, is the ideal 
model among the others. However, we did find that there does exist 
some serial correlation. 



546 A. Serletis - J. Vaccaro

Rather than ignoring the possible specification error, we applied 
new innovative panel unit root tests and found evidence that our 
money demand variables within the panel are for the most part I(1). 
As a result, this outcome then allowed us to apply panel cointegration 
tests. The results from these tests, in our opinion, showed evidence 
of  a long‑run relationship between money, interest rates, and real 
GDP. Furthermore, the application of  direct panel cointegrating 
vector tests indicated that the quantity theory demand for money 
does come close holding. However, the cointegrating vector is 
heterogeneous not only for each individual country but for each 
monetary aggregate that we considered. 

Evidently, as high‑quality cross‑country data becomes readily 
available from both developed and developing countries, the panel 
approach is an appealing methodology which can be applied to the 
money demand literature in order to resolve issues that have plagued 
researchers in this field of  study for years.
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ABSTRACT

This paper examines the demand for money using panel data for 48 
countries over the 1980‑95 time period. In our examination of  the conventional 
money demand function, we begin by empirically exploiting traditional panel 
methodology and find support for heterogeneity among the countries. However, 
specification and diagnostic tests also indicate serial correlation in all of  the 
estimated models. Recent state‑of‑the art advances in panel unit root and panel 
cointegration methodology allow us to proceed and further our analysis. Such 
procedures allow us to take advantage of  desirable statistical properties and 
obtain consistent estimates in order to test long‑run hypotheses.

JEL classification: C12; E41; E50 
Keywords: Panel unit root tests; Panel cointegration tests; International 

comparisons of  money demand.

RIASSUNTO

Verifiche empiriche su panel data della domanda di moneta

Questo lavoro esamina la domanda di moneta utilizzando panel data relativi 
a 48 paesi nel periodo 1980‑1995. Il nostro esame della convenzionale funzione 
di domanda di moneta inizia con l’utilizzo della tradizionale metodologia panel 
e ottiene un risultato di eterogeneità tra i paesi.

Peraltro  i test di specificazione  e diagnostica indicano anche una correlazione 
seriale in tutti i modelli stimati. I recenti avanzamenti nelle metodologie unit 
root e di cointegrazione ci consentono di procedere ulteriormente nell’analisi. 
Tali metodologie ci permettono di trarre vantaggio dalle proprietà statistiche 
della funzione e di ottenere stime consistenti al fine di eseguire test per il lungo 
periodo.


